Binocular contrast discrimination needs monocular multiplicative noise
نویسندگان
چکیده
The effects of signal and noise on contrast discrimination are difficult to separate because of a singularity in the signal-detection-theory model of two-alternative forced-choice contrast discrimination (Katkov, Tsodyks, & Sagi, 2006). In this article, we show that it is possible to eliminate the singularity by combining that model with a binocular combination model to fit monocular, dichoptic, and binocular contrast discrimination. We performed three experiments using identical stimuli to measure the perceived phase, perceived contrast, and contrast discrimination of a cyclopean sine wave. In the absence of a fixation point, we found a binocular advantage in contrast discrimination both at low contrasts (<4%), consistent with previous studies, and at high contrasts (≥34%), which has not been previously reported. However, control experiments showed no binocular advantage at high contrasts in the presence of a fixation point or for observers without accommodation. We evaluated two putative contrast-discrimination mechanisms: a nonlinear contrast transducer and multiplicative noise (MN). A binocular combination model (the DSKL model; Ding, Klein, & Levi, 2013b) was first fitted to both the perceived-phase and the perceived-contrast data sets, then combined with either the nonlinear contrast transducer or the MN mechanism to fit the contrast-discrimination data. We found that the best model combined the DSKL model with early MN. Model simulations showed that, after going through interocular suppression, the uncorrelated noise in the two eyes became anticorrelated, resulting in less binocular noise and therefore a binocular advantage in the discrimination task. Combining a nonlinear contrast transducer or MN with a binocular combination model (DSKL) provides a powerful method for evaluating the two putative contrast-discrimination mechanisms.
منابع مشابه
Contrast masking in strabismic amblyopia: Attenuation, noise, interocular suppression and binocular summation
To investigate amblyopic contrast vision at threshold and above we performed pedestal-masking (contrast discrimination) experiments with a group of eight strabismic amblyopes using horizontal sinusoidal gratings (mainly 3c/deg) in monocular, binocular and dichoptic configurations balanced across eye (i.e. five conditions). With some exceptions in some observers, the four main results were as fo...
متن کاملتاثیر هم افزایی دوچشمی بر مولفه های موج پتانسیل برانگیخته بینایی
Background : To determine the effect of binocular summation on the time domain transient VEP wave's components. Methods : The monocular and binocular transient visual evoked potentials of 21 normally vision volunteers 18 to 24 years (mean ± SD, 20.7 ± 1.9) during a reversing checkerboard stimulus with spatiotemporal frequency of 2.18-4 cpd-Hz were recorded. The amplitude and latency of N75,...
متن کاملBinocular interaction: contrast matching and contrast discrimination are predicted by the same model.
How do signals from the 2 eyes combine and interact? Our recent work has challenged earlier schemes in which monocular contrast signals are subject to square-law transduction followed by summation across eyes and binocular gain control. Much more successful was a new 'two-stage' model in which the initial transducer was almost linear and contrast gain control occurred both pre- and post-binocul...
متن کاملThe effects of flankers on contrast detection and discrimination in binocular, monocular, and dichoptic presentations.
We investigated how two co-aligned adjacent stimuli (flankers) influence threshold versus pedestal contrast (TvC) functions in binocular, monocular, and dichoptic presentations. Targets were presented to the two eyes or to only one eye. Pedestals and flankers were presented to the same eye to which the target was presented (binocular or monocular presentations) or to the other eye (dichoptic pr...
متن کاملImpaired spatial and binocular summation for motion direction discrimination in strabismic amblyopia
Amblyopia is characterised by visual deficits in both spatial vision and motion perception. While the spatial deficits are thought to result from deficient processing at both low and higher level stages of visual processing, the deficits in motion perception appear to result primarily from deficits involving higher level processing. Specifically, it has been argued that the motion deficit in am...
متن کامل